
56 The Delphi Magazine Issue 64

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Extending Actions

QI am using a standard action
(such as TDataSetFirst), but

want to make an OnExecute event
handler for it to extend its behav-
iour. However, the act of making an
OnExecute event handler stops
the pre-defined standard action
behaviour from occurring. How do
I overcome this problem?

AIt seems that we could
answer two action-related

questions here. One would apply
to custom (user-defined) actions,
the other to standard (Borland-
defined) actions.

The first question would be: ‘If I
set up an action and connect it to a
button, the button’s OnClick event
shares the action’s OnExecute event
handler. How can I extend the
behaviour of the button so it per-
forms the action’s code, and also
runs some extra code of my choos-
ing?’ The second question would
be the original one above, regard-
ing extending the behaviour of a
standard action.

Let’s take the custom action
question first, and deal with the
original question afterwards. As
mentioned, the usual behaviour
with custom actions is to define
their behaviour in their OnExecute
event handler. When you then con-
nect the action to an action client,
such as a button (using its Action
property), the button’s OnClick
event shares the action’s OnExecute
event handler.

In order to extend the behaviour
of the button, the idea would be to
clear the button’s OnClick event,
thereby stopping it sharing the
action’s OnExecute event handler.
You then make a normal OnClick
event handler for the button and
add in the extra code there. The
problem occurs when trying to
trigger the action’s code from the

new event handler. This is
achieved by calling the action’s
Execute method at an appropriate
point in the OnClickevent handler.

That’s it for extending the behav-
iour of an action client connected
to a custom action; fairly straight-
forward I’m sure you’d agree. Let’s
now look at the original question,
which refers to standard actions.

A standard action has all of its
functionality built in, and so does
not require an OnExecute event
handler to do its job. In fact, as the
questioner points out, the very act
of making an OnExecute event
handler stops the standard action
doing its job. So we need to find out
how to invoke the action’s built-in
behaviour from within the
OnExecute event handler.

Unfortunately, it is not as simple
as it was with the first question.
Calling the action’s Execute
method will cause an infinite loop,
since it will just call the OnExecute
event handler, which will call Exe-
cute, which will call the OnExecute
event handler, and so on. Instead,
we have to take account of how
standard actions work in the first
place.

You can read all the gory details
in my Actions And Action Lists
article from Issue 61 (September
2000), but the short story is that
they work on the assumption that
there is no OnExecute event han-
dler. After finding no OnExecute
event handler, the application
takes another approach for
standard actions.

Let’s focus on standard actions
that operate on the active control,
such as TEditCopy and TEditPaste.

When the keystroke for such an
action is pressed (remember that
standard actions do not have to be
connected to any action clients),
or the menu item is selected, the
application asks the action if it can
work against the active control. If
the action says it cannot, the appli-
cation offers it to each visible
control on the active form, then
each visible control on the main
form. When the action is given a
control it says that it can work
against (the first edit control
passed to it) it is then asked to do
its job against that control.

The HandlesTarget method is
used to find out if the action can
operate against some control and
ExecuteTarget is called to make the
action do its job against that con-
trol. If you know which control
should be used as the action client
(such as the one referred to by the
form’s ActiveControl property, or
maybe just some specific control
of your choice) you can make the
OnExecute event handler look like
Listing 1.

However, if you are not con-
cerned with which component will
be affected by the action, then you
can generalise the code a bit and
send the same message to the
Application object that an action
would normally send when it finds
it has no OnExecute event handler.
This is shown in Listing 2.

Note that SendAppMessage is not
in the Delphi 5 help, but is a short-
hand way of sending a message to

procedure TForm1.EditCopy1Execute(Sender: TObject);
begin
Caption := Format('The %s action struck at: %s',
[Sender.ClassName, TimeToStr(Time)]);

with Sender as TAction do
if HandlesTarget(ActiveControl) then
ExecuteTarget(ActiveControl)

end;

➤ Listing 1: Extending the
behaviour of an action, when
the action client is known.

December 2000 The Delphi Magazine 57

the Application object, without
checking that it has an underlying
window handle in advance.

The questioner specifically men-
tioned a dataset standard action,
and it should be mentioned that
these standard actions act on a
TDataSource component, which is
not a control. Consequently, if you
weren’t using the approach shown
in Listing 2, it would be necessary
to pass a TDataSource component
to both HandlesTarget and Execute-
Target, or even the dataset action’s
own DataSource property, if it has
been set (see Listing 3).

InActiveX

QI am developing an ActiveX
in Delphi and already have a

number of them under my belt.
This particular one is causing me a
problem when being referenced
from an HTML page. No matter
what I try, I cannot get the ActiveX
to be displayed in Internet
Explorer. It doesn’t even give me a
red cross () where the ActiveX
should be, which might indicate an
error. It just leaves the original
ActiveX placeholder image ().

The really confusing thing is that
I can import the ActiveX into
Delphi and drop an instance of it on
a form just fine. What could be
wrong with the control?

AI’ve seen cases where it was
difficult to get any ActiveX

controls to show up in Internet Ex-
plorer, for various reasons, but
this is a problem with one particu-
lar control. With the facts as they
have been laid out so far, I would

guess this is a licensing issue. To
see how valid my guess was, I did
some testing and came up with
exactly the same behaviour de-
scribed in the question. Allow me
to elucidate.

To reproduce this problem, start
Delphi and ask for a new ActiveX
Library from the ActiveX page of
the File | New... dialog. Save this
project under whatever name
you choose (for example,
MyActiveXLib.dpr). Now create an
ActiveX by choosing ActiveX
Control from the same page of
the File | New... dialog, which
invokes the ActiveX Control
Wizard.

For this simple example, we will
just choose a TButton to base the
ActiveX on, so fill in the dialog as
shown in Figure 1 (changing the file
name as you like). Note the fact
that the Make Control Licensed
checkbox is checked.

There are three consequences of
setting this checkbox. The first is
that the ActiveX coclass will have
the Licensed flag set in the type

library. This tells COM
that it must use the
IClassFactory2 inter-
face to instantiate the
COM object, rather
than the usual IClass-
Factory. Note that
IClassFactory2 has
extra methods which
are used to manage
licence information

(GetLicInfo, RequestLicKey and
CreateInstanceLic).

The next thing that happens is
that a licence file is generated on
the hard disk in the same directory
as the generated ActiveX source
file. The licence file has the same
name as the ActiveX library, but
with a .LIC extension. It is a text file
that contains a licence key for each
licensed ActiveX in the project,
one line for each. The licence key
can be any string, and the ActiveX
Control Wizard chooses to use a
new GUID for the purpose.

If the licence file already exists,
because the ActiveX library previ-
ously contained one or more
licensed controls, the new licence
key is added as a new line at the
end of the file.

The third effect of setting the
licence checkbox is that the
licence key is passed to the LicStr
parameter of the ActiveX’s class
factory constructor, in the ActiveX
control unit initialisation section.

The general behaviour of a con-
tainer program using the ActiveX
(such as a development tool) is
that the licence information will be
verified before it can be used. This
is typically done by the ActiveX
class factory analysing the .LIC file
and checking for the required
licence key information.

COM will call the class factory’s
CreateInstanceLic method (from
the IClassFactory2 interface) to
create an instance of the ActiveX
control (as opposed to Create-
Instance, from IClassFactory,

procedure TForm1.EditCopy1Execute(Sender: TObject);
begin
Caption := Format('The %s action struck at: %s',
[Sender.ClassName, TimeToStr(Time)]);

SendAppMessage(CM_ACTIONEXECUTE, 0, Longint(Sender))
end;

procedure TForm1.DataSetPost1Execute(Sender: TObject);
begin
Caption := Format('The %s action struck at: %s',
[Sender.ClassName, TimeToStr(Time)]);

with Sender as TDataSetAction do
if HandlesTarget(DataSource) then
ExecuteTarget(DataSource)

end;

➤ Listing 2: Extending the behaviour of an action, regardless of the
action client.

➤ Listing 3: Extending a dataset
action.

➤ Figure 1:
The ActiveX
Control Wizard.

58 The Delphi Magazine Issue 64

which is called for a non-licensed
control).

CreateInstanceLic normally
checks the .LIC file to see if the
licence information is present and
correct (remember the correct
licence information is passed to
the class factory constructor). The
questioner finds that he can use
the problematic ActiveX in Delphi
without problem. This is because
the .LIC file is sitting in the same
directory as the generated
ActiveX.

A development tool can query
an ActiveX for its licence key (by
querying the ActiveX through the
RequestLicKeymethod) and the key
can be compiled into any applica-
tion using the ActiveX. By doing
this, the runtime application does
not need the .LIC files to be
present.

A web page with an ActiveX
embedded in it can be considered a
developed application. However,
embedding the licence key in the
HTML is not an option, as any web
surfer user can read the HTML
source any time they like. Instead,
Internet Explorer expects to find a
reference to a licence package to
be embedded in the HTML,
describing the licence information
for all licenced controls referenced
on that page.

A licence package is a file with a
.LPK extension and is generated
with the License Package
Authoring Tool, LPK_Tool.exe.
This tool can be downloaded from
Microsoft’s website:

http://msdn.microsoft.com/
downloads/tools/lpktool/
lpktool.asp

or found in the Platform SDK.
Given this information, you

might expect to get some form of
error message from Internet
Explorer if it fails to find a required
licence package for an ActiveX that
supports licensing. However, I
found that if its security settings
are set to Low I get the same lack of
error message as described in the
question (I tested with Internet
Explorer 4).

Having compiled your ActiveX
control, and registered it on your
development machine, you can run
the License Package Authoring
Tool. This shows you a list of all
registered ActiveX controls and
allows you to choose which ones to
place references to in the gener-
ated licence package. A checkbox
allows you to only see those
controls that support licencing.

As far as LPK_Tool is concerned,
if the control supports IClass-
Factory2, then it supports licenc-
ing. Since all Delphi-generated
ActiveX controls implement
IClassFactory2, then you get all the
registered, Delphi-generated
ActiveX controls in the list, regard-
less of whether they actually
require licence keys or not. So you
will still have to look carefully
if you only want appropriate

controls referenced in the licence
package file.

Once you have selected the con-
trols to add to the package, you
press the Addbutton to move those
control names to a separate list
(see Figure 2). Finally the Save &
Exit button lets you choose a file
name and saves the licence
package file.

An .LPK file is a text file contain-
ing a header, a copyright notice (to
dissuade casual copying of the
file), a GUID that identifies the LPK
file format version and then all the
licence information. This informa-
tion is stored as uuencoded infor-
mation (to make it textual)
containing the licence details for
each control. An example file is
shown in Listing 4.

Having generated a licence pack-
age file, the next job is to insert a
reference to it in your HTML file.
This is done using an OBJECT HTML
tag, as shown in Listing 5. The class
ID is that of the Microsoft Licensed
Class Manager, which should be
installed on your system. It takes a
parameter called LPKPath which
specifies the relative location of
the licence package, with respect
to the HTML page.

There can be references to sev-
eral licence packages in an HTML
page, but Internet Explorer ignores
all but the first one. When it needs
to display a licenced ActiveX,
Internet Explorer parses the
licence package file, extracts the
appropriate licence key and
passes it to the CreateInstanceLic
method of the ActiveX class fac-
tory. If it is accepted, the ActiveX

➤ Figure 2:
LPK_Tool.exe in action.

LPK License Package
//
// WARNING: The information in this file is protected by copyright law //
// and international treaty provisions. Unauthorized reproduction or //
// distribution of this file, or any portion of it, may result in severe //
// criminal and civil penalties, and will be prosecuted to the maximum //
// extent possible under the law. Further, you may not reverse engineer, //
// decompile, or disassemble the file. //
//
{3d25aba1-caec-11cf-b34a-00aa00a28331}
CZA0y2Cu1BGW7dSU+sABkA=

AQAAAA=

hQK6fmCu1BGW7dSU+sABkCYAAAB
7ADcARQBCAEEAMAAyADgAQQAtAEEARQA2ADAALQAxADEARAA0AC0AOQA2AEUARAAt
AEQANAA5ADQARgBBAEMAMAAwADEAOQAwAH0A=

➤ Listing 4:
A licence package file.

60 The Delphi Magazine Issue 64

control is then rendered on the
page.

The solution to the original prob-
lem is therefore to make a licence
package for the ActiveX and insert
a reference to it in the HTML page.

Unit Usage

QIf I remove components from
a form, should I worry about

the units that are left in the inter-
face section’s uses clause that are
no longer strictly needed?

AGenerally speaking, having a
few units in any uses clause

that are not really needed is not
much of a big deal. The only real
disadvantage is that if some of
those units have initialisation
sections (and maybe finalisation
sections too), then the code in
those sections will be compiled
into the program and execute
unnecessarily.

Of course, there is also the possi-
bility of some of those units being
deleted, thereby causing compiler
errors when they cannot be found.
However, within the confines of the
question, this is only likely to
happen if the unit implements a
third-party component which is
uninstalled.

If you want to try and keep your
form unit interface section uses
clauses as tidy as possible, you can
follow these guidelines.

Firstly, wherever possible, you
should try and place as many unit
references into the implementa-
tion section uses clause. This
should always be possible when
the reason for adding the unit to a
uses clause is because of a refer-
ence to a routine or a data type
being used in the implementation

section of your unit. This will keep
the interface section uses clause
smaller, and will consequently
help make compilations more effi-
cient. When one unit uses another
unit, the compiler first checks out
that unit’s interface section,
including the units used by the
interface section uses clause. The
fewer units in that uses clause, the
quicker the compiler can do its job.

Secondly, in those cases where
you do need to add units into the
interface section uses clause, add
them at the beginning, rather than
the end (see Listing 6).

Any time you want to have the
interface section uses clause
spring-cleaned, delete all the units
added after the Dialogs unit. Dia-
logs is the last unit in the uses
clause of a fresh form unit in Delphi
5 (see Listing 6). By doing this, you
will be deleting a number of neces-
sary units and (hopefully) some
unnecessary units. To have all the
needed units added back in, simply
save or compile the project. The
IDE will refresh the uses clause,
laying it out in a nice and tidy
fashion.

Paper Orientation

QI am trying to change the de-
fault printer’s paper orienta-

tion and am not getting very far. I
cannot find much information on
the DEVMODE structure that seems to
lie at the heart of this type of
operation. Any ideas?

AThat depends on whether
you mean changing the set-

tings for the default printer for the
purposes of your application
(changing the local printer set-
tings), or for all applications
(changing the global printer set-
tings). Let’s see what we can find
out for both cases.

The normal case would be
changing options that only affect
your application. Usually, the user
takes charge of this, thanks to you
providing a printer setup dialog in
the program, which is quite
straightforward. However, it is not
so obvious what to do if you
want to make the change
programmatically.

As the questioner suggests, the
DEVMODE record is key to this pro-
cess. You can find information on
this structure either in Microsoft’s
Platform SDK documentation
(which you can find in the
Microsoft Developer Network
Library CD, for example) or in the
Windows SDK help file supplied
with Delphi.

DEVMODE is a record that contains
information about the device
initialisation and environment of a
printer. The record as defined has
a whole variety of fields, but many
printer drivers store additional
private information at the end of
the record. Consequently, you
often need to take great care when
declaring DEVMODE records and
passing them to a printer driver, as
you may be omitting a variety of
necessary pieces of information.

You can get a DEVMODE record
describing the current capabilities
and settings of a printer, and then
modify it as you need. One
important field in the DEVMODE
record is dmFields, which contains
a bitmask of flags indicating which
other fields in the record are valid.
The flag we are looking for that
indicates the paper orientation
can be changed is DM_ORIENTATION.
Assuming this flag is present, we
can specify a value of
DMORIENT_PORTRAIT or DMORIENT_
LANDSCAPE in the dmOrientation
field.

There are two remaining ques-
tions: firstly, how to get the
printer’s current DEVMODE, and
secondly how to update the
DEVMODE once it has been modified.
This is answered by a TPrinter
object, an instance of which is
returned by the Printer function in
the Printers unit. It automatically
gets a DEVMODE record using the
appropriate API calls and main-
tains a reference to it via a handle

<OBJECT classid="clsid:5220cb21-c88d-11cf-b347-00aa00a28331">
<PARAM NAME="LPKPath" VALUE="ButtonXControl.lpk">

</OBJECT>

➤ Listing 5: Referencing a licence package file.

uses
//Add extra units here
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

➤ Listing 6: The default uses
clause of a form unit.

December 2000 The Delphi Magazine 61

to the global memory block it
occupies.

The TPrinter class defines two
methods, GetPrinter and Set-
Printer, which can be used to gain
access to that DEVMODE, and update
it after setting new field values.
Ignore the help for these methods,
which is currently incorrect. It sug-
gests you should never need to call
these methods, but the author of
that text was mistaken.

Unusually for a VCL method,
GetPrinter takes three PChar
parameters, which are filled in with
strings that describe the currently
selected printer device, the printer
driver (which is often blank) and
the port used by the printer. Life is
easiest if you use zero-based Char
arrays for these PChar parameters,
otherwise you will be obliged to
allocate space for each of them
using memory management rou-
tines. GetPrinter also takes a var
parameter which is given the
handle to the DEVMODE record.

Assuming a non-zero handle is
returned, it can be turned into a
pointer using the GlobalLock API,
which must be paired with a call to
GlobalUnlock when we are finished.
When we have a valid pointer, this
can be used to access the DEVMODE
fields, as described earlier.

A simple project, which I have
called PrinterSettings.dpr, is sup-
plied on this month’s companion
disk, which shows how this code
works. A button shows the current
application printer settings using a
printer setup dialog, and a radio
group allows the paper orientation
to be switched. When a radio
button is selected, the current

DEVMODE is accessed. Assuming ori-
entation changes are supported,
the orientation is toggled to the
appropriate value and finally the
modified DEVMODE is re-assigned to
the printer. The code can be seen
in Listing 7.

The other thing to address was
changing the global settings.
Again, the usual way to do this is
with an appropriate dialog so the
user has control. To invoke the
printer settings property sheet
(which is what the dialog is
referred to as) in a manner that
allows updating the global set-
tings, you can use the Printer-
Properties API, declared in the
WinSpool import unit. Another
button in the sample project calls
this using the code in Listing 8.

PrinterProperties requires a
window handle that represents a
form that the property sheet (or
settings dialog) will be modal rela-
tive to, and also a handle to the
printer whose settings you want to
change. A TPrinter object has a
handle property, but this is actu-
ally a device context handle (a
handle to the printer’s canvas)
rather than a printer handle.
TPrinter does maintain a printer

handle internally, but it is not
surfaced by any methods or prop-
erties, so we have to get one for
ourselves using OpenPrinter.

OpenPrinter requires a printer
device name, which is not the
same as the strings maintained in
the TPrinter.Printers string list
(which are readable combinations
of both the device and the port), so
we get the device from another call
to GetPrinter. PrinterProperties
does all that is necessary to
change the global printer settings,
so the only other thing we must do
is close the printer handle that we
opened, using ClosePrinter. Figure
3 shows an example of a printer’s
settings property sheet.

As for programmatically updat-
ing the global settings, there
seems to be little information on
this subject around, apart from
some new support for this task in
Windows 2000. I think the idea is
that applications are encouraged
not to take charge of changing
these global settings: this should
generally be left to the user.

However, I can see a case where
it might be desirable. An applica-
tion could be using some third-
party DLL or application that
performs some printing, and might
wish to pre-set the printing
options before it starts. Unfortu-
nately, there seems to be no dedi-
cated way to accommodate this
(that I have found).

There is an API called
DocumentProperties that allows
modifications to be made to

procedure TForm1.rgLocalOrientationClick(Sender: TObject);
var
Device, Driver, Port: array[0..255] of Char;
DevModeHdl: THandle;
DevModePtr: PDevMode;

begin
Printer.GetPrinter(Device, Driver, Port, DevModeHdl);
if DevModeHdl <> 0 then begin
DevModePtr := GlobalLock(DevModeHdl);
if Assigned(DevModePtr) then
try
if DevModePtr^.dmFields and dm_Orientation = 0 then
raise EPrinter.Create('Custom paper orientations not supported');

case (Sender as TRadioGroup).ItemIndex of
0: DevModePtr^.dmOrientation := DMORIENT_PORTRAIT;
1: DevModePtr^.dmOrientation := DMORIENT_LANDSCAPE;

end
finally
GlobalUnlock(DevModeHdl)

end;
Printer.SetPrinter(Device, Driver, Port, DevModeHdl);

end
end;

procedure TForm1.btnGlobalSettingsClick(Sender: TObject);
var
Device, Driver, Port: array[0..255] of Char;
DevModeHdl, PrinterHandle: THandle;

begin
//Get printer device name
Printer.GetPrinter(Device, Driver, Port, DevModeHdl);
//Get printer handle
Win32Check(OpenPrinter(Device, PrinterHandle, nil));
try
//Invoke the printer property sheet
Win32Check(PrinterProperties(Handle, PrinterHandle));

finally
//Close the opened handle
ClosePrinter(PrinterHandle)

end;
end;

➤ Listing 7: Changing the paper
orientation programmatically.

➤ Listing 8: Changing the global
printer settings via the printer
property sheet.

62 The Delphi Magazine Issue 64

printer settings, but it turns out to
only modify application printer
settings, not the global ones.
Windows 2000 does add support
for changing global settings, but
that leaves Windows 95, 98 and NT
without a solution.

One possible lead is that some
printer drivers do store their data
in dedicated areas of the Windows
registry. For a given printer XYZ you
might find its settings in:

HKEY_LOCAL_MACHINE\System\
CurrentControlSet\control\
Print\Printers\XYZ

In this registry key is a binary entry
called Default DevMode, which
should contain the printer’s
default settings in a DEVMODE record.
So it would seem that you could
read this value into an appropri-
ately sized memory block, play
with the appropriate fields, then
write it back to the registry.

However, some drivers have no
information stored in Default
DevMode, preferring to use an INI
file. An example is Adobe Acrobat’s
PDF Writer printer driver, which
uses the PDFWRITR.INI file in the
Windows System directory.

In short, I think you are out of
luck if you are looking for a generic
solution to change global printer
settings on any Win32 platform.

Debugger Glitch

QSomething seems to be
wrong with my Delphi

debugger. Historically, as I went
stepping through my code, a green
arrow in the editor showed me
which line was about to be exe-
cuted. The editor no longer shows
me this arrow and, as you can imag-
ine, this makes code stepping quite
difficult. How can I get the arrow
back?

AThe most likely cause of this
problem is that the editor’s

gutter is too narrow (the gutter is
the column down the left hand side
of the editor). Since you mentioned
the arrow used to be displayed as
green, this implies you are using
Delphi 3 or later.

You can change the gutter’s
width with the Gutter width:
option on the Display page of the
environment options dialog in
Delphi 3 and 4, or the editor
options dialog in Delphi 5 and later.
The default value is 30 pixels.

IDE Anomaly

QI use the Minimize On Run
option to keep my Windows

environment nice and tidy whilst
testing my applications. Recently,
though, Delphi has stopped
restoring itself when the program
is closed and I have to click on the
Delphi task bar icon myself. I
cannot work out what I have
changed, so can you help me?

AThe Minimize On Run option
in the environment options

dialog is fairly simplistic in its

behaviour. When the application is
successfully launched, the IDE
minimises itself. In order to restore
itself when the program closes, it
must somehow be notified when
this happens. The way it does this
is by using the integrated
debugger.

The debugger is notified when
many ‘interesting’ things happen
to the program, and its termina-
tion is just one of them. When the
debugger notices the program has
terminated, the IDE is able to
restore itself. If the IDE is not
restoring itself successfully, the
implication is that you have turned
off integrated debugging. Turn it
back on and all will be fine.

Debugger Failure

QI have a problem trying to
get Delphi programs to com-

pile and run with the integrated
debugger switched on. The follow-
ing message appears when I try
and run the program: Debugger
Kernel BORDBK50.DLL is missing
or not registered.

The referenced DLL is on my
hard disk in C:\Program Files\
Common Files\Borland Shared\
Debugger, and was placed there
during installation. Maybe you
could shed some light on the
problem (I have a feeling it is a
problem with Windows 2000,
which is giving me trouble in other
areas as well).

AFortunately, this is not a
problem specific to Win-

dows 2000. In fact I have seen this
error a few times, on various
Win32 platforms (Figure 4).

BORDBK50.DLL is an in-process
COM server which implements
version 5 of Borland’s Win32 inte-
grated debugger. For some reason,
the installation fails to success-
fully register this server some-
times, meaning you have to do it
yourself.

Thankfully, this is an easy task.
You can either use Borland’s
TRegSvr.exe utility (supplied in
Delphi’s Bin directory) or the
Windows utility RegSvr32.exe.
From a command prompt, navi-
gate your way to the directory

➤ Figure 3: A printer
settings property
sheet in action.

64 The Delphi Magazine Issue 64

locating the DLL. Then pass the
DLL name as a command-line
parameter to either of the afore-
mentioned registration utilities,
for example:

RegSvr32 BorDbk50.dll

Missing Code Parameters

QI have been using Delphi for
some while and have no-

ticed an intermittent problem with
the Code Parameters tooltip that
shows subroutine parameters in
the editor. I know that it doesn’t
appear when there are errors in
the preceding code, but occasion-
ally it seems to stop working even
when I know that it should work.
I’ve checked the option on the Code
Insight page of the editor options
dialog and that is still enabled, so
how do I fix it?

AI’ve had this problem myself
whilst running Delphi on

Windows 95 and have seen it on
Windows 98, but I am not sure if it
also occurs on Windows NT/2000.
As the question suggests, the
Code Parameters window seems to
stubbornly refuse to appear when
you know it should do.

In fact, this diagnosis is incor-
rect, as I found out one day by
chance when I had shrunk my code
editor to a very small size. In fact,
the Code Parameters window does
appear, but it loses its stay-on-top
attribute and ends up stuck behind
the editor (see Figure 5). Whilst I
still don’t know why the problem
occurs, I have managed to come
up with a couple of workarounds
for it.

The easiest one is to close Delphi
and restart it. But if that seems
undesirable for any reason, I have
an alternative quick fix. The unit
FixCodeParams.pas on the disk

(see Listing 9) can be added to a
new package in the IDE and
installed by pressing the package
editor’s Install button. Once
installed, the problem will be
solved by the code in the Register
routine so it can then be
uninstalled via the Component |
Install Packages... dialog.

The code searches for the Code
Parameters window (which is
owned by the Application object).
If it finds it, the code proceeds to
mark the window as a normal
window (rather than a stay-on-top
window), and then resets it to be a
stay-on-top window. This seems to
do the trick for my system: simple.
The package can be kept around in
case the problem resurfaces at a
later date.

➤ Figure 4: The debugger failing to start.

➤ Figure 5: The Code Parameters
window misbehaving.

unit FixCodeParams;
//This unit fixes the problem of the Code Parameters window not appearing
// 1) Add this unit to a new package
// (File | New... | Package)
// 2) Install the package (press the package editor's
// Install button). The problem will now be fixed.
// 3) Uninstall the package
// (Component | Install Packages..., select the package
// from the list and press Remove)
interface
procedure Register;
implementation
uses
Windows, Controls, SysUtils, Forms;

procedure Register;
var
I: Integer;
R: TRect;
CodeParams: TCustomControl;

begin
for I := 0 to Application.ComponentCount - 1 do begin
if (CompareText(Application.Components[I].Name, 'CodeParamWindow') = 0) and

(CompareText(Application.Components[I].ClassName, 'TTokenWindow') = 0)
then begin
CodeParams := Application.Components[I] as TCustomControl;
GetWindowRect(CodeParams.Handle, R);
SetWindowPos(CodeParams.Handle, HWND_TOP, R.Left, R.Top, R.Right-R.Left,
R.Bottom-R.Top, SWP_NOACTIVATE);

SetWindowPos(CodeParams.Handle, HWND_TOPMOST, R.Left, R.Top,
R.Right-R.Left, R.Bottom-R.Top, SWP_NOACTIVATE);

Break
end

end;
end;
end.

➤ Listing 9: Retrieving a missing
Code Parameters window.

	Extending Actions
	InActiveX
	Unit Usage
	Paper Orientation
	Debugger Glitch
	IDE Anomaly
	Debugger Failure
	Missing Code Parameters

